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AB_CT

This paper considers the solution of hyperbolic systems of

eonscrvation laws on discontinuous grids. In particular, we eonsi&_r what

hapl_ns to conservation at grid interfaom. A procedure is prmcntr.d to

derive conservative difference approximations at the grid interfaces for two

dimensional grids which overlap in an arbitrary configuration. TI_ same

procedures are applied to compute int_da_ formulas for gri& which arc

rcfine._l in space and/or time, and for continuous grids where a switch in

the scheme causes the discontinuity.

"Supported in pan by the National Science Foundation under Grant No. MC577-02082,

by Department of Energy Contract No. DEAC0276ER03077-V, and by the National

A_ronautics and Spa_ Administration under NASA Contract No. NASl-17070, while the

author was in reaidcnce at the Institute for Computer Applications in Scicn_ and

Engineering, NASA Langley Research Center, Hampton, VA 2366.5.



-2-

1. Introduction

This paper considers ti_ solution of hyperbolic systems of conservation taws on

discontinuous grids. The dimontinuit 7 in the grid can be due to the ov_ of two

different mesh systems, or to one grid which undergoes an abrupt mesh _t in

space and/or time. Some of our results include the case where the discontinuity is due to

switching numerical schemes on the same grid, mtlwr than the switching of the grids

themselves. In either ease, since the solution is discontinumm, some analog m

eonservative differencing is needed at the grid into'face. Following Lax and Wendroff

[1960] we give interface conditions that guarantee that if the solution converges, it

converges to a weak solution of the equatior, s, and thus insures correct jump ©onditions

for shocks.

Computations with internal interfaces are becoming more common from two sources.

First, many large scale scientific computations, for example in mmsonle flow, are

nmdeling more and more _smplex geometries in two and three space dimensions. As the

mnfigumtions that can be modeled _ more complex, so does the grid generation

problem. It is very difficult to generate one smooth body-fiued coordinate transformation

around a general possibly multiply connected domain. To simplify this problem, it is

becoming more eornmon to use several grids at once, each in a different mordirmte system

(Boppe, [1980]; Arm, [1981]; Benek, Steger and Dougberty, [1983]). Each part of the

domain will still have a body fitted grid, but now the eornponent grids will in general

overlap each other in an irregular fashion, (for example see figure 1.1). Thus, additional

boundary ©onditions will be needed for those grids with a boundary that is interior m the

problem domain.

The second soume of these interface problems comes from the use of adaptive

techniques, where a grid is abruptly refined in space and time. In this approach, used by

(Bolstad [1982]; Oropp [1980]; Berger and Oliger [1984]; Berger and Jameson [1983]),

rectangular fine grids are superimposed on an underlying emrse grid in those regions

where the solution accuracy is inadea:lUate. Thus, rims can be regarded as a special ease of

the independent grids describe_! above. In addition tobeing refinedin space, the grids are

refinedin time as weU, so that smaller steps are taken on the fine grids. This is done so

thatthe mesh ratioXS_e = kcoar_e, so the same integratcn"is stable cn each grid. The

small timestep does not have to be applied on the entire grid. (See figure 2.2 for an

illustration of this.) Similar ideas have been proposed in the multigrid literature, for

example see Brandt [1981] and McCormick [1984].

Both multiple component grids and mesh refinement will be even mere necessary in

3D calculations. For difficult problems involving for example wings, nacelles, engines,
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Figure 1.1 Independently generated component grids for flow in a channel around

an obstacle.

(_mards, etc., if one insists on using one global coordinate system for the grid

discrctization, wc believe that some type of local refinement will be mmtm.utry to make up

for the extreme grid skcwness and uneven resolution that thesc global grids can't avoid.

Thus, there will still be an interface problem.

In both d the cases described above, it is important to me combative interface

procedures to guarantee the correct shock location for shocks passing through grid

boundaries, and to insure that artificial shocks arc not gctwrate_ at grid interfaces. We

give a gcnera] procedure for deriving conservative interface conditions that give weak

solutions to the differential equation if they cxmverge. The method gives formulaes of

arbitrary order of accuracy, but the higher order ones may be unstable. In some _ases,

the resulting formulas are not new, although the derivation is. In other ca_s, the

different approach leads to new formulas, for example in the case of overlapp_ing grid

systems, which are not _tely equivalent to a finite volume apptmch for

determining fluxes across the boundary. Some of our results arc still _, in that

numerical experiments have not yet been done.

In the rest of this section we review m basic facts about conservation and set

notation for the rest of the paper. Our basic approach follows from a Imu:isc definition of

conservation on irregular grids (by which we mean overlapping compot_t grids or grids

with an abrupt refinement in space or time). In t_.c-'tion 2 we me this apprmr.h to derive
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intcrfacc conditions for an interface duc to an abrupt rCflncmcnt in space, then space and

timc. In section 3, wc formalize the approach illustrated in section 2, and discums the

order of accuracy. In section 4 wc look at the case of overlapping meshes in one spacc

dimension, as a prelude to the more difficult problems in two dimensions in section 5. We

present an algorithm for determining conservative intcrfacc conditions for grids which

intersect in an arbitrary way in two dimcnsions_ Howcvcr, in the general case, there are

many open questions remaining which will be important for numerical co_naputations using

independently generated component grids.

Consider the solution of a hyperbolic system of conservation laws

u,+f(.)_ = o, 0.1)

_(x,t=0) = _0(x).

In caseswhere the solutionis discontinuous,a classicalsolutionby definitionno longer

exists.Instead,u isa weak solutionif

f f uc_t + f(u)C_x dx dt + f uo(x)c_(x ) d.t = 0, (1.2)

for any smooth test function _,(x,t) with o_npac_ support. In problems with a

discontinuity in the solution, the speed s of the discontinuity is given by the Rankinc

Hugoniot condition,

*[_1= Ill, 0.3)

where the brackets denote the jump in the quantity at the discontinuity. This condition

follows directiy from (1.2), see Lax [1972]. It is well known that the numerical

computation of a discontinuous solution of (1.1) rcquires the numerical scheme to be In

conservation form. An explicit finite differenoe approximation to (1.1) Is in conservation

form if it can be written

_+1 = Q(@_p,... ,@+_+1)
At

= _T- _- a+8(_T-p,...,_T+q),

where g is a Llpschitz contimmxm numerical flux function and A+

diffcrenoc operator. Conmtency reqxm'cs that g(v,v,...,v) = f(v).

0.4)

m the forwm'd

The question of conservation when switching between two different grids or

numerical sc_rr_s has been considered by several authors. Warming and Beam [1976]

derived transition operators for switching conservatively between MacC.,ornmck's method

and a second order upwind scheme. Hessenius and Pulllam [1982] applied this transition

operator approach to derive so-called zomd interface conditions, however, with a
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significantlossof accuracyat the zonal interfaces.Rai [1984]hasdevelopedconservative
zonal interlace conditionsfor zonal grids which share a commongrid line, and has

beautiful calculations demonstrating the shock capturing ability of zonal grids with a

discontinuity crossing zones. The derivation presented here contains his algorithm as a

special case. The need for conservative grid interfaces is illustrated by Bcnck, Steger, and

Dougherty [1983]. Their transonic flow calculations use grids in two coordinate systems,

one around an airfoil and one smaller embedded grid around a flap. The computed

shock is very distorted as it passes through the grid interface.

Finally, Osher and Sanders [1984] have conservative interface equations for a mesh

which is refined by an integer r in time. However, their scheme requires the saving3 of r

intermediate values in time at the boundary of the free grid. Our approach (or a variant

of theirs) yields conditions without this drawback, and so am easier to implement.

The ai-_roach we take is based upon the direct numerical approximation of (1.2),

and the proof that a convergent conservation form scheme converges to a weak solution.

We repeat the main argument of the Lax and Wendroff proof to set the stage for the

further development, which also uses summation by parts. Take the txmservation form

scheme (1.4), multiply by the test function 4_3, Ax, and At, and sum over all grid points

j, and n>-0, giving

XX "3+_--'3'3 A,_
/ n>O At

= -E E sC'/-e+l"J+_+l)-sC'/-e"J+_) ¢3 ate,.
Ax

j naO

Applying summation by parts to the left sidde of (1.5) gives

which

03)

. n+l_. n n n-1

X Y."j- "j,3 A,_ = Y.X "_(*J_-*_ A,_ - Xvj0,y_,
j nzO At J nzl J

convergesto ff-u,_ dt- fuo(x),(x)dx under suitablehypotheses as

Ax,At-.O. A similar summation is done on the right hand side of (1.5).

Another way to say the above is that the integral in definition (1.2) is being

approximated by the trapezoid rule,

f. _ = X.j h + O(h2). 0.0
J

Instead of exactly conserving the quantity t(t) = fu(x,t)dx, except for the flux at the

boundaries of the domain, the diserete approximation

s" = _ h "3 (1._)
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is conserved exactly by the numerical scheme. It is this integral alvmximation (1.6) and

numerically conserved quantity (1.7) that we generalize when considering conservation on

irregular grids.

2 Interfaces Due to an Abrupt Mesh Refinement

To develop the procedure,we fn'stconsiderthe very simple case of an abrupt mesh

refmemcnt in space. We will show how to derive a class of cons_'vative interface

conditions that give weak solutions to the differential equation if they converge.

For ease of presentation, we consider the case of mesh refinement by a factor of 2.

Assume thc interfacebctwccn the coarseand flncgridsislocatedatx = 0, where we tmc

thc notationof figure2.1.

x=O

v_ 2 v 0 vI v 2

Flgure 2.1 Inteffaccfor mesh refinementinspace only.

Assumc on either side of the interface we integrate using a scheme in conservation form

with a 3 point stencil The scheme is

v(x,t+k)-v(x,t)=
k

S(x:+h)-&fx-h:) x>h
h

2h

x=0

(2.1)

The goal is to detcrminc the unknown function Q for the interface equation for v(x=O,t)

in such a way that ccrnservation is maintained.
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FonowingLax and Wendroff, we multiply (2.1) by * smooth test function d_(x,t_

and the mesh widths in time and space. Summation by parts will again put the

differences on _, which should converge to the _rivatives of _, and the sums to

integrals in space and time. However, in this case there wiU be boundary terms arising

from the summation by parts at the interface, where the mcah width changes. _ can then

be determined by requiring that these boundary terms atl vanish up to terms d order h.

In addition, there is some flexibility as to which discrete integral approximation to use,

although any integration formula will give a oonsistent boundary approximation. For the

summation in space, for example, we can consider the one-sided approximation to the

integral

v(x,t) = v(x,t) + v(x,Oh, (2.2)

or the nmre aceumte trapezoid rule,

=f v(x,t)dx = _ v(x,t)2h + _ v(x,t)h + "_'v(O,t). (2.3)
--_ x_-2h x_eh

If the interface formula Q is derived using (2.2), then the solution will exactly conserve at

each time step the discrete approximation on the righ t hand side of (2.2), and _'nilarly if

(2.3) is used.

Suppose we multiply (2.1) by 4_, and use the rule (2.2) m form the sums. The

interesting thing is what happens to the right hand side, which is

+ Q(-2h,O,h),t,(O,Ohk=

(2.4)

- I

+

The two sums in (2.5) already form an O(h) approximation to the integral in space. We

must have that the three terms remaining cancel up to terms of order h, or
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_(-2h,0,h)_(0,0+ S(-2h,0)_(-2h,0-sC0,h)4,(h,0= O(h)."

Exlmnding the testfunction4_(x,t)around x=0 gives

[_ + s(-2h,o)- s(0,h)]4,(0,0= O(h).

(2.6)

(2._9

+ T (f(h)-/(0))-2A- .

3h Q(-2h,0,h) = g(0,h) - S(-2h,0).
2

For the Lax-Wcndroff w.hemc thisgives the interface equation

v(O,t+k) = v(O,t) + 3(f(h)-f(-2h))

v(o,t+k)= _(o,0+ _(f(h)-f(-2h)) (2.9)

+--_k2[A(2)(f(h)-f(O))-2A(-h)(f(O)-f(-2h)) ].

This is not a very accurate approximation, however. For _ooth solutionsthe local

truncation error is only O(h). However, since the scheme is only applied at one point we

can still get convergence (in the linear case) if the combined scheme is GKS_tablc, since

the method applied everywhere else is at least O(kh) (Gustafsson, [1975]).

If however, the more accurate integral approximation (2.3) is used, the mine

prucedumyieldstheinterfaceapproximation

(2.10)

(2.11)

This is a more accurate approximation, with local truncation error O(kh). F_,ither d thcac

interface conditions could have been easily derived using a finite volume approach, and

balancing the flux at the interface. However, this formalism will help in more

mmp_catod situations.

g(vj_l,vj)= f(vJ-1)+f(vJ) + k {Vj-l+V/}2 yA 2 (f(_)-/(_j-0),

where the Jacobian A = Of the resulting interface approximation is
8u '

The interface condition Q is therefore determined by requiring

+ S(-_,0)-S(0,h)= 0. (2.8)

For example, using the nurr_rlcal flux function B for the Law-Wcndroff difference

scheme,
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For the case of mesh refinement in time and space, we again eomider the Idmplest

case of refinement by a factor of 2, using the notation of figure 2.2. Interface equations

are needed for v_ t2 and v_ so that global conservation is maintained.

1
vQ

v_ 2 v I v 2

Vo112

j
v 0

Figure 2.2 Interface for mesh refinement in space and time.

Again assuming a three point stencil, the scheme is

=
2k 2h

v(x,t+k)-v(x,O = g(x,x+h)-g(x-h,,) x>0
k h

v(O,t+k)-v(O,t) = Q
k

v(O,t+ 2k)-v(O,t+k) = R
k

(2.15)

Again, all equations in (2.15) are multiplied by 4,(x,t) and either 2h 2k for j<0,hk for
3h

j>0, or --_ k forj=O, using the trapezoid rule. When summation by parts is applied to

the termswith the differencingin spmz, eneh sum willproducea boxmdm'y term. The

requirement that the boundary terms vanish to order h gives (dropOng the mmmmtion in

ame)

This can be a_ompiished by def'ming

a = 3h ' (2.16)

2
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and

{2= 3h '

2

These interface conditions can be shown to be firstorder accurate, with local mmmcion

error O(kh). For mesh refinement in time and space by an arbitrary integer r, the

formulas generali_ immediately,and have the interestingstencilshown in figure2.3.

Figure 2.3 Interface stencil for n_sh refinement in time and space.

It is difficult to prove stability of the interface equatiem (2.16). For mesh

refinement in space ordy, the conservative interface eonditiom (2.11) using Lax-

Wendroff to advan_ the fine and ccarsc grids can be shown to be stable in the _-nsc of

Gustaffson, Kreiss and Sundstrom [1972] (Berger, [1982]). In numerical e.xpcrimcnts,

the interface equations for mesh refinement in time and space are stable, and give good

results when either a discontinuity or rarefaction wave passes through the interface.

Unfortunately, in the non-dissipative case, more care is required to develop stable

and conservative interface equations. Consider a mesh refined in space only by a factor

of 2, and use cell-centered variables as indicated in figure 2.4. We will consider the semi-

discrete version of ut -- ux with central differencing on either side of the interlace. One

pouibility for conservation across the line x = 0 is given by the equations

(uj+ u/-1)21

(2.17)
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V/+l --v/-1
vj,= 2k

I [ (vo+vl)vm= "h" 2

v0+ v 3

In (2.17), we use u3 = 2

j>l

(U0+Ul) ] _-- V0+Vl--U0--1Jl

2 ] 2/I

• This set of equations supports a standing mdl]ation on

the fine grid, emanating from the interface, with no such wave on the coarse grid. Thus,

energy is radiating from the interface without any incident waves, and so the interface

given is unstable.

u_ 1 u 0 v 0 v 1
(uI )

Figure 2.4 Mesh refinement in space with cell-centered variables.

An alternate approach is to interpolate for v_ 1 using u 0 and mt of t.hPt,coarse grid,

and use the interface equations

v 1 -- v_ 1

vm = 2h (2.18)

I [(v-l+v0) (.-1+.0)]%= 2h 2 2

This interface condition does not exdte the unstable oscillatory mode in (2.17). The two

dimensional nonlinear analog of equation (2.18) has been tested by computing steady

transonic flow with the Euler equations, (BerBer and Jameson, [1983]).

3 Discrete Approximations to lntes_b

In this section we formalize the approach illustrated in the examples in section 2.

We assume a computation is done using one grid, with an interface at the point x = O.

The interface can be due to a mesh refinement, or to using one nmnerical w.Jmme on the
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left, and a different one ou the right. A class of conservative interface formulas will be

derived at the point x = 0.

The goal is to obtain a weak solution of (1.2). By approximating the integral using a

general quadrature formula, the interface equation will again be determined m that the

discrete formulas is exactly conserved at each time step. To do this, we first quote the

fonowing lemma from (Mock and Lax, [1978 9. They state

Lemma: Let f be any C ® function on R + with bounded support. GDen any positive Ime$er

p, there exists a quadrature formula accurate to order _ of the form

f f(x)dx = h _,_ wj f(jh) + O(h_),
o

where the weights depend on ¢, but wj = 1 for j_w .

The weights w/ are derived from the Euler MacLaurin summation formula. An

integration rule for the whole donmin is derived by putting two one-sided formulas

together. Since the weights are constant equal to 1 in the interior of the grid, a scheme in

conservation form will conserve this aocurate approximate except at boundary regions. In

what foUows, we witl ignore all boundary terms except those arising from the internal

interface.

We can thus write

f.d_-- E h _j._ + O(h_), (3._)
J

and

sn= _ h wj._. 0.2)
J

To exactly conserve S at each step, we have

= hs'.
J

At

-- hE wj(.j0+ T(sC._,.j+_)_sC.j__,.j)) + (.8 + A_)w0h,
j_0

where for case of notation we assume a two point flux function 8. Clearly $I = so if

&(uj,uj+ l) (wj+ l - wj) + Wo(g --8- )

Quo = /=-_
w° h (3.3)

where we use WL/I= 1 for _]>t,. Note that this approximation can have a big stencil,

even though the formulas on either side are only three point formulas. For 1, = 1 or
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v = 2, i.e.,using the rectangle,or trapezoid ro]_, these formulas have clear finite

volume in_rpretations, but for v>2 this is not _e case. To show that any d these

approximationsgive a weak solutionffthcy converge,we write

vF1-v_= f|g(x._+h)_g(x-h.O

At [Q0vB j=0' 0.4)

Q as defined in (3.3). Multiply each sick by _ and the weights wj, and sum over all

grid points,

vT+_-_,_ s(_j,vj+3-s(vj__,_j))
Z At ,_ wjh = y. h ¢_jh + hQovo¢_w0.(3.s)
j j,0

Applying summation by parts to the right hand sid_ sum gives

g(v# v_+ l) - g(vj- l ,vj)
Z = h dp_wjh
j_e0

= Y.s(vj-:,_#)(¢7-_wj-_-_j)- s(,0,_)¢_
L/I>2

= _ g(v_-_,_J)(*_-_-*D- s(_0,_)_j

'lJ

- _ s(_j_a,_j)(,y__wj__-_,_j).
Ltl=0

The first sum is already an O(h) approximation to the intcgral. Sinoc _ is smooth, we

can expand _j in the remaining two terms around _0, also with an error O(h). By

definition of Q0v0, all the remaining terms multiplying _0 disappmr, to tcrms of O(h),

and we have

Proposition 3.1: Any consistent approximation to the tntegml determines an tmerface

equation that gives a weak solution to the pde, _ the approximations converge as h -> 0.

Wc will use thisto derive approximations in more complicated gcom_tri_ by exactly

conserving some $, rather than seeking a finite volume interpretation.

In general, it is difficult to say anything about the order of accuracy of the lntedace

approximations so dedved in the more omnmon cases where v= 1 or 2. For higher order

integration approximations, however, we have the following.

Let

so= 1o+ o(h_)

where/0 = fu0 dx. The conservationlaw (1.1)exactlyconservesfu dx, so

On)
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go= 11

By dcsign, the discrete approximation is conserved,

so = Sl

and so

Looking more closely at 0.8),

sI= t _ + O(hD. O.s)

(3.9)
J

= _hwj(.fjh,At)+ Offe+b)+ _0(.(0,A,)+ O(h'+1)),
J_0

where we assumc the numerical sc_mc on eitherside of the intm'fa_ has ordm" d

accuracy p, Oacnce the localtruncationerrorin the firststepisof order p+l), and tlm

interface approximation has unknown order of accuracy E. Continuing, we have

sI= _,j(.0h,A,)+ Oqe+b + woo(h'+b. (3.10)
J

P.zluation(3.10)followssincethe errorterm O(/_ +I) in the summation ismultipliedby

h, but sunnned over 1/h gridpoints.

The sum remaining in (3.10)isthe same integrationruleappliedm the truesolution

u at the firsttimc step,and so

S1 = 11 + O(h_) + O(hP+1) + woO(he+2). (3.11)

Therefore, by (3.8) the last two terms in (3.11) must cancel up m terms of order h _'.

Thus for v>p+ I,E>p- I,showing

Proposition 3.2: The interface approximation is not less than one order of accuracy lt:a than

the accuracy of the scheme itself, for an integration rule with order of accuracy ¢_p + I.

Unfortunately, for v_:p, this argument only shows that E>v-2. For example, if

v=2 for the trapezoid rule, and p=2 for many nun_cal methods, we only have G_O.

In practise however, we have always obtained E= I, or in general t = rain(p-l,v-I)

for v<p as well. If this weren't true, the step where u_ = u(jh,nAt) + 0(_) would

not be true, since the globalorder of accuracyof the solutionwould drop to e+l, or one

morethantheorderof accuracyoftheboundaryformuta( see C,ustahson,[1975]).
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40verlappln 8 Grids In One Dimension

In this section we apply the previous technique to derive interface conditions for a

one dimensionalmodel problem where two gridsoverlap,and do not sharea common grid

line. The configuration is shown in figure 4.1. Notice thatwe have switched to using

cellcenteredratherthan gridpointcenteredvariablesin thissection.

h
V

J I i I I I

v 0 v I v 2 v 3 v 4

h
d I d2

u_ 5 u_ 4 u_ 3 u_ 2 u_ 1 u 0

Flsure 4.1 Overlapping C-_ds inOne Dingnsion

Interface conditions are neexled for u 0 and v O. Unfortunatcly, the simplest procedure

of interpolating for u_ + I at the new tirnc Icvcl from the interior integration of v, and vice

versa, is not conservative in any way.

Again, we start by defining a discrete approximation to the integral of a function on

the entire domain. Outside of the overlap region, the integration rule we use will be the

second order accurate midpoint rule. In the region of overlap both grids wig contribute

equally to the approximation of the integral. In particular, the _ around u_ 3 will

dl

mntribute (h,,-dl) u_ 3 to the part of the integral without overlapping, and _ u_ 3 to

the overlapped region.-Thus,

+ [/-0 2 + (hv-d2)v4 + J_eS_hvvJ"

(4.1)
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This is still a second order aceuram inmgrafion rule, since the approximation drops m first

order at only two cells.

The point of figure 4.1, and the approximation 4.1, is that we are not combining tim

grids into one glottal grid, as is indicarexl in figure 4.2 for example. This would leave a

tiny cell in the interior of the grid where special formulas would be needed m avoid

instability from exceeding the CFL condition. (We say more about this possibitky lamr)

The point of figure 4.1 is that two calculations on regular grids will be done

independently, one on each grid, and extra work will be done only at the boundary of

each grid.

t

I

u_ 5 u_ 4 v I v 3 v 4u_ 3 v 0

+\

v 2

Fl_,zre4.2Merging OverlappingGridsIntoOne GlobalC,rid.

Using(4.1),we calculatethediscretefluxchange

dl

StartS° = g(u- 3,1L- 2)-- "_(g(l_- 3,14- 2)- g(l+-4,u- 3) ) (4.2)

1 h. h_
+ _-(-e(u-3,u-9+ s(u-1,.0))+ TQuo + T_o

1 d2

+ _(-s(_o,_)+8(_,_4)) _ (e(_4,_)-e(_3,v4))- e(_3,_4),

where Qu0 is defined by u(_+1 = u_] + AtQUo, and similarly for Rvo. As before, the

fluxes that remain are from the neighboring cells where the weights +4,/in the integration
rule change.

sl_s 0
For _ation, we set At = 0, and divide the fluxes in (4.2) _g to
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which interface they came from. This gives the interface apprmdmations

d2 d2

-
"'v

Qu0 = h, (4.3)

g(vo,vl) dl dl
- s(,-4,,-3)-O-V-)s(,-3,,-z)

"'u

Rvo = h_

Thus, the missingfluxat the leftend of the cellfor v0 islinearlyinterpolatedfrom the

fluxeson the othergrid,and viceversa. Thh givesa firstorder accurateformula for u0

and v0. Notice that the interiorboundaries are not treated as inflow or outflow

boundaries,and thatthe formulas are independentof the directionof the characteristicsat

the interface. This information will appear in the definition of the numerical flux function

g itself.

The linearstabilityof the interpolationformulas for ovcrhppin 8 g_idsin 1D was

proved by Starius [1980] using the Lax Wendmff scheme on both grids, and by Reyna

[1982] and BerBer [1983] for the lealdro 8 scheme. (If the equation h linear, then

interpolation of the fluxes is equivalent to interpolation for the mlution itself.) We point

out that if the two grids meet at a common grid point without overlapping, then for

certain ratios of the mesh spacing (h u = hv,h . = 2by) , the leapfrog scheme is unstable.

Since linear interpolation gives a first order accurate interface appmxtnmtion, it is

rca_nnable to wonder if higher order interpolation of the fluxes would yield a more

accurate approximation. For example, suppose we define Rv 0 by cubic interpolation, and

simplify notation by assuming the left end of the v grid lies exactly in the middle of the

cell for u_3,(i.e, dl= hal2 ). Then

-&(u_2,U_l) + 98(u_3,a_2) + 98(u_4,u_3) - 8(i__5,1__4)

Rvo = 16

This corresponds to conserving an approximation

&, h. -2

S = _ _-v s + m + S"_4h.wsus,s.o - s_, h'us + ,_, 2 us _

15 24 33

where w_ 2 = 24' w-3 32' and w_ 4 32" However, it is unlikely that this

particular approximation is stable, since the interpolation coefficients are not positive.

Before moving on to the 2D case, we raise one other possibility that we have only

considered in 1D. This idea is based on using the global grid of figure 4.2, and the large
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timestepmethods of LeVeque [1982]. The problem with the grid in figure 4.2 is that the

tiny cell associated with the value u_ 3 will force a reduction in the time step to maintain

stability, if no modification of the difference scheme is made. In the large time step

algorithm of LeVeque, instead of calculating fluxes at the cell boundary, and then

differencing the fluxes to update the cell value, the jump in the solution at the Hell

boundary is propagated, in the locally correct direction, and added to the existing value to

get the solution at the next time step. This is what Roe calls IncremeJu$orm. V_Ith a CFL

condition > I, the differences can propagate several cells away, and are not limited m

one or the other of the ceils immediately adjacent to the boundary. For example, in

figure 4.2, consider the equation u t + au x = 0, with a<0. The jump _- v_ is

propagated completely to the left, with a speed of propagation a for time At, binding

completely in the cell associated with v 2. The total amount of v 2 at the new time is

hvv_+ 1 = hvv_ + Ata(v_-- v_), (4.4)

which is just upwind differencing. For a nonlinear equation, u t + f(u)z = 0, (4.4) is

re cea by

hvv,+I = hvv, + Atl fv'-fv']V3-- V2 (V_-- V_). (4.5)

Now consider the smaller ceil for u_ 3 in figure 4.2. The jump (v0-u_3) can

propagate completely through u_3's Hell, and partially into u_ 4. The distance that the

jump reaches into the cell of u_ 4 is ( _ )At- h_3, giving the difference equations

1 -- u"_3+
t j 0'o- u-3)

_ _ h_ 3
fu-s-fu-, At ll,Vo-u-3 J,n_._l _= Un_.4+ _ (U_3__U_4) + (VO__U_3)
t"-3-u-4 h,

Total conservation foUows from the definition of the algorithm.

We have not yet considered the generalization of this algorithm to 2D and to rotated

grids, where the direction of propagation of a jump is not clearly defined. A algorithm

related to this, called flux redistribution, has been proposed by Chern and Coleila [1984]

in connection with a front tracking scheme.
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$ OverlappingGrids In Two Dimensions

In this section we formulate a general algorithm to give comervative boundary

equations for meshes which ovcrhtp in an arbitrary lash/on in two dimem/ons. We start by

first considering the very special case of 2 grids which are rotated by 'n'/4 with respect to

each other, and where the grid lines of one go through the corners of the other, as in

figure 5.1. We will quickly go through several more compl/cated pictures to derive the

more general algorithm. However, it is in the simpler cases that the physical

interpretation of the results is clear.

/

,//\E
I

Fisure 5.1 Two grids rotated by "tr/4 with respect to each other.

As before, boundary conditions are needed only for the rotated grid across the Line

= 0. We will assurae the grids overlap by as many ceils as neces.utry, which is typicagy

2 or 3, depending on the relative mesh sizes of the two grids. On the vertical grid, a time

step can proceed completely ignoring the rotated grid, and ignoring boundary conditions

for the vertical grid. Extra work will be done only at boundaries, and not in the interior

of a grid. Otherwise, it would lead to complicated data strucUnes, and a loss (ff

vectorizadon. By keeping the intedor computations separate, they can also be done in

pamuel.

We define the discrete conserved quantity S using the solution on the vertical grid

where it stands alone, and both grids with a weight of 1/2 where they overlap. The
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h 2

diagonal cells in the vertical grid which intersect the boundary will have a weight -_

/,2

from the non-overlapping triangular part of the cell, and -_- from the overlap region.

Being imprecise with notation m avoid a mess, we have

S Y. h2uU+
nonoverlapped

region

3h 2 h2-- vu.(5.x)
_. --_"u,+ z,eLd2UO+ _r_ dd_so_

region &rid

The solution on the vertical grid is denoted by u, and on the rotated grid by v. We seek

a definition for the missing flux _ in the integration of vU,

_j = vij + i(vij,vIj+_)-_(vij-1,v_j) + -_

SI_ sO

In calculating At ,the terms that remain are from neighboring cellsin the

verticalgridwhere the integrationweights in (5.1)change. These fluxesare marked with

dark lines in figure 5.1. Clearly, by defining

)_1/2 = ___ [f__l/2,i+ f_+ Lt2,i] - l [gi,i_l/2+ gLi+ ll2 ]

the fluxes balance. Since A_ = _/2 h in figure 5.1, we get the formula

/j = 2__2(f,_v2,i+f_+v2.,) _ 12-_2 (s,.i- v2+s,,_+l_.

On the vertical grid the equation being solved is u I + f(U)x + g(U)y =0. Ona

grid rotated by 4' using the. coordinates illustrated in figure 5.1, the equation bectmms

where

,, +/_ + _ = 0, (5.4)

interpolation for the mrrect fluxes in the new coordinate system, and m b second order

accurate if the method on the vertical grid is second order.

Two more obmrvations complete this case before eomidertng the more genm'al

situation. Fu_t, consider what happens if the grid spsdng on the rotated grid Is halvcd.

The fluxes that don't cancel on the vertical grid are the same, whereas two interface

1
For the case e = -_r/4, the flux function j_ = --/_-(f- S), and so (5.3) is linear

vz
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eXlUnfl_s arc necded on the rotated grid. Everything balances by assigning

)_ = - m,_-_2)_-_2,_

_+I/2 I= 2--x_(/'_+_2,i- m,_+ID,

Thc fluxes arc scpamr_l depending on whcthcr tlmy lic above or below the line

= j+ i/2.

w=l U_q

//\
/ w=i/2!

/\/

J

<
/

/
<,

/

%
Figure S.2 Two grids minted by _r/4 with irregular ovcrlap.

The second generalization is shown in figure 5.2. The grids are still rotated by _r14,

but the grid lines of one do not exactly pass through the corners of the other grid. The

weights used in the integration rule for the u grid are marked in figure 5.2, where the

overlapping cell areas are denoted by p and q as indicated. Thc vertical grid fluxes that

determine the flux into the rotated grid are darkened in figure 5.2. The resulting

interface equations are

_ = -_ {q [f _- _,_-- &l,i + UZ] + (1-- p -- q) [f _+ la,_-- &Ij- U'z]
(5.5)

+ pL6+_,_-l-gi+lj-trz]
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Again, all the fluxes from the vertical grid lying between grid lines j and j+ I are used to

define the missing flux. This 6 point stencil is not equivalent to a finite voltrme formula in

a natural way.

Leaping ahead to the general case, consider figure 5.3. Tim interface equation for

is a linear combination of the neighboring fluxes,

]wj = af11+ f_f12+ "I&1 + af_ + Es11, (s._

with c_effleientsdetermined by the amount of overlap and the integrationrule. For

example, to find the ¢_effi¢ienty for the ocmtribudonof f12,firstwe need to know the

differingweights of the adjacent cellsin the integrationrule.Tim cellto the lefthas

weight w0,2 = I. To the Hght the weight isdetermined by the amount eftoverlnp,can it

p, so the weight is w 1,2 = 1- 2_-. The flux contribution is for fl,2 is then W0,2-- WI |2
or

P-- in total. Some of this flux is also used to determine f_j+1- The proportion given to2
/

is determined

coordinate line _ = j.

lw=l f] 2 __
a I

_=0

Figure $.$ Getmml Overlap#ng Grids in 2D.
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This interfaceprocedure can be irnplcmontedfor general2D gridsin a pmcti_ way

with the followingsteps.When the initialgriddingisdone, some prcprocessingh

to de_rmine

(a) the areaof intersectionfor the cellsinthe main grid,and

Co) the intersection of the normal coordinateUncs of the new gridwith allceU sides

of the main grid. If there is no such inmrsection, all of the flux on a side is used.

Step (a) determines the weight of the celh in the integration rule, and step (b) determines

the amount of the main grid's flux to be apportioned to the j_ boundary cell. Since two

quadrilateral grids can intersectin a many sided polygon, depending on the mesh mtim of

the grids, these Stel_ can be complicated. In step (a), it is po_ble that the conservative

interpolation procedure of Dukowicz [1984] for rezoning lagrangian calculations will be

helpful in calculating overlap areas. In any case, this pre_g is only done once. The

ccefficicnt$ for the linear combinations in the boundary equations are saved in a data

structure corresponding to the boundary of the overlapping grid. During the time

integration, we repeat step

(e) when the fluxes on the main grid are calculated, the appropriate amount of each

fluxistransmittedto the new grid.

This procedure does involveextra storageoverhead proportionalto the lengthof the grid

boundary. We pointout thatitapplieseven ifan operatorsplitscheme isused, so thatnot

allfluxesare availableat the same time.
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